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Far-zone behaviors of scattering-induced statistical properties of
partially polarized spatially and spectrally partially coherent

electromagnetic pulsed beam∗
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In this study, we explore the far-zero behaviors of a scattered partially polarized spatially and spectrally partially
coherent electromagnetic pulsed beam irradiating on a deterministic medium. The analytical formula for the cross-spectral
density matrix elements of this beam in the spherical coordinate system is derived. Within the framework of the first-order
Born approximation, the effects of the scattering angle θ , the source parameters (i.e., the pulse duration T0 and the temporal
coherence length Tcxx), and the scatterer parameter (i.e., the effective width of the medium σR) on the spectral density, the
spectral shift, the spectral degree of polarization, and the degree of spectral coherence of the scattered source in the far-zero
field are studied numerically and comparatively. Our work improves the scattering theory of stochastic electromagnetic
beams and it may be useful for the applications involving the interaction between incident light waves and scattering media.
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1. Introduction
The statistical characteristics of a scattering medium are

directly associated with the properties of the incident source
and the scatterer. Thus, the cross-spectral density (CSD) of
the far-zero scattered field is measured in order to acquire
the specific information about the scatterer.[1–5] The scatter-
ing of light wave is of great interest due to its wide appli-
cation in optical communication, medical imaging, and re-
mote sensing.[6] In the past several decades, the findings about
scattering media have focused on various types of scatter-
ing media, such as a deterministic medium,[1–3,7,8] a col-
lection of particles,[4] and a random medium including a
quasi-homogeneous media,[9] a Gaussian Schell-model ran-
dom medium,[10,11] a semisoft boundary medium,[12] a non-
Gaussian-correlated medium,[13] and a quasi-homogeneous
anisotropic medium.[14] Additionally, the incident sources
have also been extended from monochromatic or polychro-
matic, scalar or vector plane waves to more common beams,
such as partially coherent beams,[15,16] stochastic electro-
magnetic beams,[7,17,18] plane-wave pulses,[3,19] and vortex
beams.[8] For these incident sources, considerable work has
been done in illustrating the scattering processes based on the
theory of the first-order Born approximation.[7–19] However,
most of the existing studies were restricted to the situation in
which the incident source was statistically stationary, at least
in the wide sense.[4–17] To date, only a few studies have fo-
cused on a non-stationary source.[2,3,18,19]

A typical non-stationary stochastic source called spatially
and spectrally partially coherent pulses was introduced by La-
junen et al.[20] By extending the notion of the CSD matrix
from stochastic electromagnetic stationary beams to stochastic
electromagnetic pulsed beams, we explored the propagation
properties of a partially polarized spatially and spectrally par-
tially coherent electromagnetic Gaussian Schell-model pulsed
(EGSMP) beam in a turbulent atmosphere.[21–23] To the best
of our knowledge, an investigation of the statistics of a par-
tially polarized spatially and spectrally partially coherent elec-
tromagnetic pulse irradiating on a deterministic scattering
medium has not been presented thus far. For this reason, based
on the theory of the first-order Born approximation, we ex-
plore the case of a partially polarized spatially and spectrally
partially coherent EGSMP beam interacting with a determin-
istic scattering medium. The statistical properties such as the
spectral intensity, the spectral shift, the spectral degree of po-
larization, and the degree of spectral coherence of this scat-
tered beam in the far-zero field are discussed in detail in this
paper. Some interesting results are obtained.

2. Theoretical formulation
We begin our discussion by considering a planar, stochas-

tic electromagnetic, statistically non-stationary source that is
incident on a deterministic scattering medium. In the space–
time domain, the statistics of this source can be defined by a
2× 2 mutual coherence function (MCF) matrix. This matrix
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can be expressed in the following form

𝛤 (0)(𝜌1,𝜌2, t1, t2)

=

[
Γ

(0)
xx (𝜌1,𝜌2, t1, t2) Γ

(0)
xy (𝜌1,𝜌2, t1, t2)

Γ
(0)

yx (𝜌1,𝜌2, t1, t2) Γ
(0)

yy (𝜌1,𝜌2, t1, t2)

]
, (1)

where

Γ
(0)

αβ
(𝜌1,𝜌2, t1, t2) = [〈E∗α(𝜌1, t1 ) Eβ (𝜌2, t2)

〉
]

for α,β = x,y, with the asterisk being the complex conjugate,
and the angular bracket being the ensemble average. For a
partially polarized spatially and spectrally partially coherent
EGSMP beam,

Γ
(0)

αβ
(𝜌1,𝜌2, t1, t2)

= Aα Aβ Bαβ exp

[
−𝜌2

1 +𝜌2
2

4w2
0
− (𝜌1−𝜌2)

2

2δ 2
αβ

]

× exp

[
− t2

1 + t2
2

2T 2
0
− (t1− t2)

2

2T 2
cαβ

]
exp [iω0(t1− t2)] ,

(α,β = x,y), (2)

that is, Γ
(0)

αβ
(𝜌1,𝜌2, t1, t2) is composed of separable space-

dependent part and time-dependent part.[20] Aα and Aβ are
the average amplitudes of the α and β electric field compo-
nents, respectively, Bαβ represents the correlation coefficient
between α and β electric field components. These compo-
nents have the following characteristics:[21,23] Bαβ ≡ 1 for
α = β , |Bαβ | ≤ 1 for α 6= β , and Bxy = B∗yx = |Bxy|exp(iψ),
ψ is the phase difference, ψ 6= kπ (k = 1, 2, 3, . . . ). w0 and
δαβ are the beam width and the spatial coherence width, re-
spectively. ω0 is the central frequency of the pulse, T0 is the
pulse duration, and Tcαβ is the temporal coherence width of
the pulse.

According to the extended Wiener–Khintchine
theorem,[23] we have

W (0)
αβ

(𝜌1,𝜌2,ω1,ω2)

=
1

(2π)2

∫∫
Γ

(0)
αβ

(𝜌1,𝜌2, t1, t2,)

× exp[−i(ω1t1−ω2t2)]dt1 dt2, (3)

that is, the MCF and the CSD form a Fourier-transform pair.
When equation (2) is substituted into Eq. (3), the following
formula is obtained

𝑊 (0)(𝜌1,𝜌2,ω1,ω2)

=

[
W (0)

xx (𝜌1,𝜌2,ω1,ω2) W (0)
xy (𝜌1,𝜌2,ω1,ω2)

W (0)
yx (𝜌1,𝜌2,ω1,ω2) W (0)

yy (𝜌1,𝜌2,ω1,ω2)

]
, (4)

with

W (0)
αβ

(𝜌1,𝜌2,ω1,ω2)

=
Aα Aβ Bαβ T0

2πΩ0αβ

exp

[
−𝜌2

1 +𝜌2
2

4w2
0
− (𝜌1−𝜌2)

2

2δ 2
αβ

]
× exp[−Tαβ (ω1,ω2)], (5)

where

Tαβ (ω1,ω2) =
(ω1−ω0)

2 +(ω2−ω0)
2

2Ω 2
0αβ

+
(ω1−ω2)

2

2Ω 2
cαβ

, (6)

with

Ω0αβ =
√

1/T 2
0 +2/T 2

cαβ
,

Ωcαβ =
√

T 2
0 +T 2

cαβ
/T 2

0

describing the spectral width and the spectral coherent width
of the pulse, respectively.[22]

Based on the CSD matrix of an electromagnetic pulsed
beam, there are three important fundamental statistical prop-
erties of the incident field that could be defined as the average
spectral intensity,[23]

S0(𝜌,ω) = Tr
[
𝑊 (0)(𝜌,𝜌,ω,ω)

]
=

A2
xBxxT0

2πΩ0xx
exp
[
− 𝜌2

2w2
0
− (ω−ω0)

2

Ω 2
0xx

]
+

A2
yByyT0

2πΩ0yy
exp

[
− 𝜌2

2w2
0
− (ω−ω0)

2

Ω 2
0yy

]
, (7)

the spectral degree of polarization (DOP),[22]

P0(𝜌,ω) =

√
1− 4Det𝑊 (0)(𝜌,𝜌,ω,ω)

Tr2𝑊 (0)(𝜌,𝜌,ω,ω)
. (8)

(i) For Bxy= 0,

P0(𝜌,ω) =

∣∣∣∣∣∣∣∣∣∣
A2

xBxx

Ω0xx
exp
[
− (ω−ω0)

2

Ω 2
0xx

]
−

A2
yByy

Ω0yy
exp

[
− (ω−ω0)

2

Ω 2
0yy

]
A2

xBxx

Ω0xx
exp
[
− (ω−ω0)

2

Ω 2
0xx

]
+

A2
yByy

Ω0yy
exp

[
− (ω−ω0)

2

Ω 2
0yy

]
∣∣∣∣∣∣∣∣∣∣
; (9)

(ii) For Bxy 6= 0,

P0(𝜌,ω) =

√
p2

2(ω)+4p2
3(ω)

p1(ω)
, (10)

where

p1(ω) =
A2

xBxx

Ω0xx
exp
[
− (ω−ω0)

2

Ω 2
0xx

]

+
A2

yByy

Ω0yy
exp

[
− (ω−ω0)

2

Ω 2
0yy

]
,
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p2(ω) =
A2

xBxx

Ω0xx
exp
[
− (ω−ω0)

2

Ω 2
0xx

]
−

A2
yByy

Ω0yy
exp

[
− (ω−ω0)

2

Ω 2
0yy

]
,

p2
3(ω) =

A2
xA2

y
∣∣Bxy

∣∣2
Ω 2

0xy
exp

[
−2(ω−ω0)

2

Ω 2
0xy

]
, (11)

and the spectral degree of coherence (DOC)[24]

µ(𝜌,𝜌,ω1,ω2)

=

√
Tr
[
𝑊 (0)(𝜌,𝜌,ω1,ω2)𝑊 (0)∗(𝜌,𝜌,ω1,ω2)

]√
𝑆(𝜌,ω1)𝑆(𝜌,ω2)

. (12)

In Eqs. (7)–(12), Det and Tr are the determinant and
the trace of the CSD matrix, respectively. It can be found
in Eqs. (7)–(12) that Ax, Ay, Bαβ , T0, and Tcαβ are the key
parameters that determine the statistical properties of the inci-
dent field.

scattered domain D

incident electromagnetic
 pulsed source

scattered wave
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Fig. 1. Illustration of symbols relating to incident partially polarized spa-
tially and spectrally partially coherent electromagnetic pulsed source irradi-
ating on deterministic scattering medium in spherical coordinate system.

Figure 1 shows that the partially polarized spatially and
spectrally partially coherent EGSMP source is incident along
the direction of a real unit vector 𝑠0(p, q,

√
1− p2−q2) on a

linear, isotropic, statistically stationary non-magnetic medium
occupying a finite domain D in free space. The physical prop-
erties of the incident field at any two vectors 𝑟1 and 𝑟2 can be
described by the CSD matrix. This matrix is expressed as[2]

𝑊 (i)(𝑟1,𝑟2,𝑠01,𝑠02,ω1,ω2) =

[
Wxx(𝑟1,𝑟2,𝑠01,𝑠02,ω1,ω2) Wxy(𝑟1,𝑟2,𝑠01,𝑠02,ω1,ω2)
Wyx(𝑟1,𝑟2,𝑠01,𝑠02,ω1,ω2) Wyy(𝑟1,𝑟2,𝑠01,𝑠02,ω1,ω2)

]
, (13)

with W (i)
αβ

(𝑟1,𝑟2,𝑠01,𝑠02,ω1,ω2) =
[〈

E(i)∗
α (𝑟1,𝑠01,ω1 ) E(i)

β
(𝑟2,𝑠02,ω2)

〉]
, (α,β = x,y), which can be expressed in the follow-

ing form:

W (i)
αβ

(𝑟1,𝑟2,𝑠01,𝑠02,ω1,ω2) =
∫∫

|𝑠01⊥|2≤1

∫∫
|𝑠02⊥|2≤1

d2𝑠01⊥d2𝑠02⊥Aαβ (𝑠01⊥,𝑠02⊥,ω1,ω2)exp [−i (k1𝑠01 ·𝑟1− k2𝑠02 ·𝑟2)] , (14)

where 𝑠0 j⊥ = (p j,q j) ( j = 1, 2) is the projection of the unit
vector 𝑠0 onto the source plane, and k j = ω j/c ( j = 1, 2)
is the wave number with c being the speed of light in vac-
uum. It should be noted that in Eq. (13), the interval is cho-
sen as |𝑠0 j⊥|2 ≤ 1, indicating that the evanescent waves are
omitted[7] and only the superposition of the electromagnetic
pulsed waves in the electric field of the incident source is taken
into consideration, and Aαβ (𝑠01⊥, 𝑠02⊥, ω1, ω2) is an angular
correlation function of an incident source, that is, the four-
dimensional Fourier transform of the CSD matrix of the elec-
tric field components in the incident plane z = 0, and given
by[7]

Aαβ (𝑠01⊥,𝑠02⊥,ω1,ω2)

=

(
k1k2

4π2

)2 ∫∫ ∞

−∞

d2𝜌1 d2𝜌2W (0)
αβ

(𝜌1,𝜌2,ω1,ω2)

× exp [−i (k2𝑠02⊥ ·𝜌2− k1𝑠01⊥ ·𝜌1)] . (15)

When equation (5) is substituted into Eq. (15), one ob-
tains

Aαβ (𝑠01⊥,𝑠02⊥,ω1,ω2)

=
Aα Aβ Bαβ T0

2πΩ0αβ

(
k1k2

2π

)2

w2
0σ

2
αβ

exp[−Tαβ (ω1,ω2)]

× exp
[
−

w2
0 (k1𝑠01⊥− k2𝑠02⊥)

2

2

−
σ2

αβ
(k1𝑠01⊥+ k2𝑠02⊥)

2

8

]
, (16)

where
1

σ2
αβ

=
1

4w2
0
+

1
δ 2

αβ

. (17)

In this research, we assume that the interaction between
the incident source and the scatterer is extremely weak. Thus
the first-order Born approximation is used to describe the scat-
tering process.[1] Then the scattered wave 𝐸(s)(r𝑠,ω) in the
far-zone can be expressed as[2]

𝐸(s)(r𝑠,ω)

= −𝑠×
[
𝑠×

∫
D

F(𝑟′,ω)𝐸(i)(𝑟′,𝑠0,ω)G(r𝑠,𝑟′,ω)d3𝑟′
]
,

(18)

where 𝑟 is the position vector of any point in the inside or
outside space of the scatterer, 𝑠 = (sx,sy,sz) is the unit vector
along a specified scattering path, and D denotes the scattered
domain. F(𝑟′,ω) is the scattering potential of the medium,
and G(r𝑠,𝑟′,ω) is Green’s function in free space, which can
be given by[2]

G(r𝑠,𝑟′,ω) =
exp(ikr)

r
exp[−ik𝑠 ·𝑟′]. (19)

Based on Eq. (18), the three Cartesian coordinate compo-
nents of the far-zero scattered field are written as
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E(s)
x (r𝑠,ω) =

∫
D

F(𝑟′,ω)G(r𝑠,𝑟′,ω)
[(

1− s2
x
)

E(i)
x (𝑟′,𝑠0,ω)− sxsyE(i)

y (𝑟′,𝑠0,ω)
]

d3𝑟′, (20a)

E(s)
y (r𝑠,ω) =

∫
D

F(𝑟′,ω)G(r𝑠,𝑟′,ω)
[
−sxsyE(i)

x (𝑟′,𝑠0,ω)−
(
1− s2

y
)

E(i)
y (𝑟′,𝑠0,ω)

]
d3𝑟′, (20b)

E(s)
z (r𝑠,ω) =

∫
D

F(𝑟′,ω)G(r𝑠,𝑟′,ω)
[
−sxszE

(i)
x (𝑟′,𝑠0,ω)− syszE

(i)
y (𝑟′,𝑠0,ω)

]
d3𝑟′, (20c)

where sx, sy, sz are the three Cartesian coordinate components

of the scattering direction 𝑠. In addition, from Eq. (18), it is

easy to find 𝑠 ·E(s)(r𝑠,ω) = 0. In other words, the electric

field direction and the scattered wave vector direction are per-

pendicular to each other in the far-zero field. Thus, it is conve-

nient to describe the scattered field in the spherical coordinate

system. Hence, the radial component disappears, and only the

remaining two non-zero components need considering. More-

over, the two non-zero components of the far-zero scattered

field in the spherical coordinate system can be expressed as

E(s)
θ
(r𝑠,ω) = cosθ cosϕE(s)

x (r𝑠,ω)+ cosθ sinϕE(s)
y (r𝑠,ω)

− sinθE(s)
z (r𝑠,ω), (21a)

E(s)
ϕ (r𝑠,ω) = −sinϕE(s)

x (r𝑠,ω)+ cosϕE(s)
y (r𝑠,ω), (21b)

where θ is the scattering angle and ϕ is the observation az-

imuth. When equation (20) is substituted into Eq. (21), one

obtains

E(s)
θ
(r𝑠,ω) =

∫
D

d3𝑟′F(𝑟′,ω)G(r𝑠,𝑟′,ω)

×
[
cosθ cosϕE(i)

x (𝑟′,𝑠0,ω)

+cosθ sinϕE(i)
y (𝑟′,𝑠0,ω)

]
, (22a)

E(s)
ϕ (r𝑠,ω) =

∫
D

F(𝑟′,ω)G(r𝑠,𝑟′,ω)

×
[
− sinϕE(i)

x (𝑟′,𝑠0,ω)

+cosϕE(i)
y (𝑟′,𝑠0,ω)

]
d3𝑟′, (22b)

where sx = sinθ cosϕ , sy = sinθ sinϕ , and sz = cosθ .

Similarly, the CSD matrix of the scattered beam in the

far-zero field is given by

𝑊 (s)(r𝑠1,r𝑠2,ω1,ω2)

=
[
W (s)

αβ
(r𝑠1,r𝑠2,ω1,ω2)

]
=
[〈

E(s)∗
α (r𝑠1,ω1 ) E(s)

β
(r𝑠2,ω2)

〉]
,

(α,β = θ ,ϕ). (23)

By substituting Eq. (22) into Eq. (23), and using

Eqs. (14), (16), and (19), we can obtain the elements of the

CSD matrix in the spherical coordinate system of a scattered

partially polarized spatially and spectrally partially coherent

EGSMP beam in the far-zero field, irradiating on a determin-

istic scattering medium, which are expressed as

W (s)
θθ

(r𝑠1,r𝑠2,ω1,ω2)

=
e[−i(k1−k2)r]

r2 [cosθ1 cosϕ1 cosθ2 cosϕ2Fxx(r𝑠1,r𝑠2,ω1,ω2)

+ cosθ1 cosϕ1 cosθ2 sinϕ2Fxy(r𝑠1,r𝑠2,ω1,ω2)

+cosθ1 sinϕ1 cosθ2 cosϕ2Fyx(r𝑠1,r𝑠2,ω1,ω2)

+cosθ1 sinϕ1 cosθ2 sinϕ2Fyy(r𝑠1,r𝑠2,ω1,ω2)], (24a)

W (s)
θϕ

(r𝑠1,r𝑠2,ω1,ω2)

=
e[−i(k1−k2)r]

r2 [−cosθ1 cosϕ1 sinϕ2Fxx(r𝑠1,r𝑠2,ω1,ω2)

+cosθ1 cosϕ1 cosϕ2Fxy(r𝑠1,r𝑠2,ω1,ω2)

−cosθ1 sinϕ1 sinϕ2Fyx(r𝑠1,r𝑠2,ω1,ω2)

+cosθ1 sinϕ1 cosϕ2Fyy(r𝑠1,r𝑠2,ω1,ω2)], (24b)

W (s)
ϕθ

(r𝑠1,r𝑠2,ω1,ω2)

=
e[−i(k1−k2)r]

r2 [−sinϕ1 cosθ2 cosϕ2Fxx(r𝑠1,r𝑠2,ω1,ω2)

−sinϕ1 cosθ2 sinϕ2Fxy(r𝑠1,r𝑠2,ω1,ω2)

+cosϕ1 cosθ2 cosϕ2Fyx(r𝑠1,r𝑠2,ω1,ω2)

+cosϕ1 cosθ2 sinϕ2Fyy(r𝑠1,r𝑠2,ω1,ω2)], (24c)

W (s)
ϕϕ (r𝑠1,r𝑠2,ω1,ω2)

=
e[−i(k1−k2)r]

r2 [sinϕ1 sinϕ2Fxx(r𝑠1,r𝑠2,ω1,ω2)

−sinϕ1 cosϕ2Fxy(r𝑠1,r𝑠2,ω1,ω2)

−cosϕ1 sinϕ2Fyx(r𝑠1,r𝑠2,ω1,ω2)

+cosϕ1 cosϕ2Fyy(r𝑠1,r𝑠2,ω1,ω2)]. (24d)

Here,

Fαβ (r𝑠1,r𝑠2,ω1,ω2)

=
∫∫

|𝑠01⊥|2≤1

∫∫
|𝑠01⊥|2≤1

F̃∗(𝐾1,ω1)F̃(𝐾2,ω2)

×Aαβ (𝑠01⊥,𝑠02⊥,ω1,ω2)d3𝑠01⊥d3𝑠02⊥,

(α,β = x,y), (25)

where Aαβ (𝑠01⊥, 𝑠02⊥, ω1, ω2) is shown in Eq. (16), and
𝐾 j = k j(𝑠 j𝑠0 j) ( j = 1, 2) is a vector. Here,

F̃(𝐾,ω) =
∫

D
F(𝑟′,ω)exp[−i𝐾 ·𝑟′]d3𝑟′ (26)

is the three-dimensional Fourier transform of the scattering
potential F(𝑟′,ω). Let n(𝑟′,ω) be the refractive index dis-
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tribution throughout the scatterer, then the scattering potential
F(𝑟′,ω) will be given by the following formula:[25,26]

F(𝑟′,ω) =

 k2

4π

[
n2(𝑟′,ω)−1

]
, 𝑟′ ∈ D,

0, otherwise.
(27)

In this research we assume that there is a deterministic
medium with a three-dimensional Gaussian distribution scat-
tering potential, i.e.[7]

F(𝑟′,ω) = F0exp
[
− 𝑟′2

2σ2
R

]
, (28)

where F0 is a positive constant, σR is the effective width

of the medium,[25] and the beam condition is satisfied, i.e.,

σR � λ0/π
√

2.[26] In this case, by substituting Eq. (28) into

Eq. (26), one obtains

F̃∗(𝐾1,ω1)F̃(𝐾2,ω2)

=
∫

D

∫
D

F∗(𝑟′1,ω1)F(𝑟′2,ω2)

× exp
[
i
(
𝐾1 ·𝑟′1−𝐾2 ·𝑟′2

)]
d3𝑟′1 d3𝑟′2

= F2
0 (2π)3

σ
6
R exp

[
−σ2

R
2
(
𝐾2

1 +𝐾2
2
)]

. (29)

when equations (16) and (29) are substituted into Eq. (25), one

obtains

Fαβ (r𝑠1,r𝑠2,ω1,ω2)

=
k2

1k2
2Aα Aβ Bαβ T0F2

0 σ6
Rw2

0σ2
αβ

Ω0αβ

exp[−Tαβ (ω1,ω2)]

×
∫∫

p2
1+q2

1≤1

∫∫
p2

2+q2
2≤1

exp

{
−σ2

Rk2
1

2
(s1x− p1)

2 +(s1y−q1)
2 +

(
s1z−

√
1− p2

1−q2
1

)2
}

×exp

{
−σ2

Rk2
2

2
(s2x− p2)

2 +(s2y−q2)
2 +

(
s2z−

√
1− p2

2−q2
2

)2
}

×exp
{
−

w2
0

2
[
k2

1(p2
1 +q2

1)−2k1k2(p1 p2 +q1q2)+ k2
2(p2

2 +q2
2)
]}

×exp

{
−

σ2
αβ

8
[
k2

1(p2
1 +q2

1)+2k1k2(p1 p2 +q1q2)+ k2
2(p2

2 +q2
2)
]}

d p1 dq1 d p2 dq2, (α,β = x,y), (30)

where 𝑠1 = (s1x,s1y,s1z),𝑠2 = (s2x,s2y,s2z).

To derive the integral in Eq. (30), we have used an ap-
proach similar to that shown in Ref. [8]. It is clearly seen that
in Eq. (16), the value of the Aαβ (𝑠01⊥,𝑠02⊥,ω1,ω2) declines
exponentially with the increase of p1, q1, and p2, q2. Thus, it
is assumed that

i) only the values within the interval of p2
1 + q2

1� 1 and
p2

2 +q2
2� 1 have a significant influence on the integral;

ii) the value of the angular correlation function is zero un-
less p2

1 +q2
1� 1 and p2

2 +q2
2� 1, so the integral range can be

extended to ∞.

Furthermore, under the circumstance,
√

1− p2
1−q2

1 and√
1− p2

2−q2
2 may be given in the first-order approximation of

the Taylor expansion as 1− (p2
1 +q2

1)/2 and 1− (p2
2 +q2

2)/2,
respectively.[8]

After extensive integral calculations, Fαβ (r𝑠1,r𝑠2,ω1,ω2)

in Eq. (30) can be written as

Fαβ (r𝑠1,r𝑠2,ω1,ω2)

=
k2

1k2
2Aα Aβ Bαβ T0F2

0 σ6
Rw2

0σ2
αβ

Ω0αβ

exp[−Tαβ (ω1,ω2)]

× π2

m2αβ nαβ

exp

[
k2

2σ4
R(s

2
2x + s2

2y)

4m2αβ

+
ξ 2

xαβ
+ξ 2

yαβ

4nαβ

]
×exp

{
−σ

2
R
[
k2

1(1− s1z)+ k2
2(1− s2z)

]}
,

(α,β = x,y), (31)

where

aαβ =
w2

0
2

+
σ2

αβ

8
, bαβ =

w2
0

2
−

σ2
αβ

8
,

m jαβ = k2
j aαβ + k2

j
σ2

R
2

s jz ( j = 1,2),

nαβ = m1αβ −
k2

1k2
2b2

αβ

m2αβ

,

ξxαβ = k2
1σ

2
Rs1x +

k1k3
2σ2

Rbαβ

m2αβ

s2x,

ξyαβ = k2
1σ

2
Rs1y +

k1k3
2σ2

Rbαβ

m2αβ

s2y. (32)

Therefore, the statistical properties of far-zone scattered

field can be given by the average spectral intensity

S(r𝑠,ω) =W (s)
θθ

(r𝑠,r𝑠,ω,ω)+W (s)
ϕϕ (r𝑠,r𝑠,ω,ω), (33)
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the spectral degree of polarization (DOP) is

P(r𝑠,ω) =

√
1− 4Det𝑊 (s)(r𝑠,r𝑠,ω,ω)

Tr2𝑊 (s)(r𝑠,r𝑠,ω,ω)

=

√(
W (s)

θθ
−W (s)

ϕϕ

)2
+4W (s)

θϕ
W (s)

ϕθ

W (s)
θθ

+W (s)
ϕϕ

, (34)

and the spectral DOC is

µ(r𝑠1,r𝑠2,ω1,ω2)

=

√
tr
[
𝑊 (s)(r𝑠1,r𝑠2,ω1,ω2)𝑊 (s)∗(r𝑠1,r𝑠2,ω1,ω2)

]√
𝑆(r𝑠1,ω1)𝑆(r𝑠2,ω2)

. (35)

It should be noted that equation (35) describes the two-
frequency, two-point spectral DOC in the space–frequency do-
main. In practical terms, for the non-stationary fields, the field
correlations between different frequencies at one specified
space position r𝑠1 = r𝑠2 = r𝑠 may be of greater interest.[27]

Therefore, in the paper we will use the term “spectral coher-
ence” to describe the correlation properties between the spec-
tral components rather than to depict the spatial coherence
studied in the space frequency domain.[26] Under this circum-
stance, equation (30) is expressed as

Fαβ (r𝑠,r𝑠,ω1,ω2)

=
Aα Aβ Bαβ T0F2

0 σ6
Rw2

0σ2
αβ

Ω0αβ

exp[−Tαβ (ω1,ω2)]

× π2

mαβ nαβ

exp

[(
σ4

R
4mαβ

+
µ2

αβ

4nαβ

)
(s2

x + s2
y)

]
×exp

[
−σ

2
R
(
k2

1 + k2
2
)
(1− sz)

]
,

(α,β = x,y), (36)

with

aαβ =
w2

0
2

+
σ2

αβ

8
, bαβ =

w2
0

2
−

σ2
αβ

8
,

µαβ = k2
1σ

2
R +

k1k3
2σ2

Rbαβ

mαβ

,

mαβ = aαβ +
σ2

R
2

sz, nαβ = mαβ −
k2

2b2
αβ

mαβ

. (37)

When equations (36) and (37) are substituted into
Eq. (35), the degree of spectral coherence µ(r𝑠,ω1,ω2) of a
scattered partially polarized spatially and spectrally partially
coherent EGSMP beam can be obtained.

3. Numerical simulations and discussion
Now, we use Eqs. (7)–(12) and Eqs. (33)–(35) to graph-

ically investigate the behaviors of the statistical properties of
the incident field and the far-zero scattered field. Several rel-
evant parameters are selected when a partially polarized spa-
tially and spectrally partially coherent EGSMP beam is inci-
dent on a deterministic medium. The calculation parameters
are shown in Table 1, unless otherwise specified. We em-
ploy the parameters as examples for the numerical simula-
tions. Other values could also be used depending on the sit-
uations. Moreover, all of the parameters satisfy the following
beam conditions[22]

1
4w2

0
+

1
δ 2

αα

≤ 2π2

λ 2 , (α = x,y),σR�
λ0

π
√

2
,

max
{

δxx,δyy
}
≤ δxy ≤min

{
δxx

|Bxy|
,

δyy

|Bxy|

}
,

max
{

Tcxx,Tcyy
}
≤ Tcxy ≤min

{
Tcxx

|Bxy|
,

Tcyy

|Bxy|

}
.

(38)

Table 1. Simulation parameters.

Parameter Simulation value Unit

Wavelength λ 0 632.8 nm

Beam width w0 5 mm

Pulse duration T0 5 fs

Spatial coherence width δαβ δxx = 1, δyy = 0.5δxx, δxy = δyx = 1.5δxx mm

Temporal coherence width of the pulse Tcαβ Tcxx = 5, Tcyy = 0.5Tcxx, Tcxy = Tcyx = 1.5Tcxx fs

Average amplitudes Aα Ax = 1.5, Ay = 1 /

Correlation coefficient Bαβ Bxx = Byy = 1, Bxy = B∗yx = 0.3exp(iπ/3) /

Effective width of the medium σR 1.0λ0 nm

Observation azimuth ϕ 0 rad

Angular frequency ω ω0 = 3.0×1015, ω = 1.1ω0, ω1 = 1.05ω0, ω2 = 0.95ω0 rad/s

Figure 2 depicts the contour graphs of the normalized spectral intensity S(r𝑠,ω)/Smax(r𝑠,ω) of a scattered partially polar-
ized spatially and spectrally partially coherent EGSMP beam for different values of the effective width of the medium σR as a
function of the scattering angle θ and observation angle ϕ , the pulse duration T0 and the temporal coherence length Tcxx. It can
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be clearly seen that all the σR, ϕ , and T0 affect the distribution of the normalized spectral intensity S(r𝑠,ω)/Smax(r𝑠,ω), whereas
Tcxx hardly influences its distribution. With the increase of σR, the profile of the normalized spectral intensity S(r𝑠,ω)/Smax(r𝑠,ω)

quickly changes. For the case of the unaltered ϕ (see Figs. 2(b1)–2(b4)), |θ | corresponding to the value of S(r𝑠,ω)/Smax(r𝑠,ω)

increases as T0 grows. In addition, σR has a significant influence on the normalized spectral intensity of the far-zero scattered
field.
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Fig. 2. Contour graphs of normalized spectral intensity of scattered partially polarized spatially and spectrally partially coherent EGSMP beam for
different values of σR as a function of θ and [(a1)–(a4)] ϕ , [(b1)–(b4)] T0, and [(c1)–(c4)] Tcxx.
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Fig. 3. Comparison between incident field and scattered field with respect to the normalized spectral intensity versus relative spectral shift (ω−ω0)/ω0
for different values of (a) θ , (b) σR, (c) T0, and (d) Tcxx, with [(a) and (b)] S0 denoting incident normalized spectral intensity, [(c) and (d)] numbers 1
and 2 representing incident normalized spectral intensity, and 3 and 4 referring to scattered normalized spectral intensity.
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Figure 3 shows the normalized spectral intensity
S(r𝑠,ω)/Smax(r𝑠,ω) of both the incident and the scattered
partially polarized spatially and spectrally partially coher-
ent EGSMP beam versus the relative spectral shift δω/ω0=
(ω−ω0)/ω0 for different values of the scattering angle θ (see
Fig. 3(a)), the effective width of the medium σR (see Fig.3(b)),
the pulse duration T0 (see Fig. 3(c)), and the temporal coher-
ence length Tcxx (see Fig. 3(e)). Compared with the incident
spectral intensity, it is found that the normalized spectral inten-
sity shifts toward the smaller frequency, i.e., a red shift occurs.
The red shift increases as both θ and σR increase, and the red
shift decreases as both T0 and Tcxx increase. Moreover, the rel-
ative spectral width |(ω−ω0)/ω0| decreases with the increase
of T0 and Tcxx, which is defined as a corresponding relative
spectral shift distance as the spectral intensity drops to its e−2

times.
Figure 4 shows the spectral DOPs of a scattered partially

polarized spatially and spectrally partially coherent EGSMP
beam versus the relative spectral shift δω/ω0 = (ω−ω0)/ω0

for different values of panels (a1, b1) the scattering angle θ ,
panels (b1, b2) the effective width of the medium σR, pan-
els (c1, c2) the pulse duration T0, panels (d1, d2) the tem-
poral coherence length Tcxx, and the coefficients Bαβ . For
panels (a1)–(d1) Bxy = Byx = 0, panels (a2)–(d2) Bxy = B∗yx =

0.3× exp(iπ/3). It can be seen from Fig. 4 that the coef-
ficients Bαβ affects only the value of the spectral DOP, and
they barely affect the distribution of the spectral DOP. For the
case of the δω/ω0 = 0, the corresponding value of the spectral
DOP decreases as both θ and Tcxx increase except for θ = π/2,
and the corresponding value increases as T0 increases. In ad-
dition, the relative spectral width |(ω −ω0)/ω0| decreases as
θ , T0, and Tcxx all increase. It can be clearly seen that for
θ = π/2, the value of the spectral DOP is always kept at 1 for
different values of the coefficients Bαβ . At the same time, it is
found that the value of the spectral DOP remains invariant as
σR varies. This implies that the behavior of the spectral DOP
of the scattered partially polarized partially coherent EGSMP
beam is independent of the value of σR.
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Fig. 4. Behaviors of the spectral DOP of scattered partially polarized spatially and spectrally partially coherent EGSMP beam versus relative spectral
shift (ω −ω0)/ω0 for different values of (a1, a2) θ , (b1, b2) σR, (c1, c2) T0, and (d1, d2) Tcxx, with [(a1)–(d1)] Bxy = Byx = 0, and [(a2)–(d2)]
Bxy = B∗yx = 0.3× exp(iπ/3).

To learn more about the vector properties, the behaviors of the spectral DOPs of both the incident and scattered partially
polarized partially coherent EGSMP beam versus the scattering angle θ for different values of the pulse duration T0, the temporal
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coherence length Tcxx, and the coefficients Bαβ are shown in Fig. 5. It can clearly be seen that the coefficient Bαβ has an influence
only on the value of the spectral DOP, and it hardly affects the distribution of the spectral DOP. For the case of θ = 0 or π , the
value of the spectral DOP decreases as both the T0 and Tcxx increase. As can be seen in Figs. 5(a2) and 5(b2), the minimum
value of the spectral DOP decreases as both T0 and Tcxx grow, and the maximum value of the spectral DOP stays constant as
both T0 and Tcxx vary. Moreover, the Tcxx exerts a more obvious effect on the spectral DOP. Comparing with the incident field,
the spectral DOP of the scattered field varies periodically with position, and it is always less than the initial value for a certain
distance. Otherwise, it is greater than the initial value. This implies that the state of polarization of scattered field can be changed
by adjusting its position.
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Fig. 5. Behaviors of spectral DOP of both incident and scattered partially polarized spatially and spectrally partially coherent EGSMP beam versus
scattering angle θ for different values of [(a1),(a2)] T0 and [(b1), (b2)] Tcxx, with [(a1), (b1)] Bxy = Byx = 0, [(a2), (b2)] Bxy = B∗yx = 0.3× exp(iπ/3),
numbers 1–3 denoting incident spectral DOP, and numbers 4–6 representing scattered spectral DOP.

The polarization properties, i.e., the coherence properties
of the scattered light field at a single point in terms of both
space and frequency, are contained in the polarization matrix
𝐽 (s)(r𝑠,ω). This matrix is defined as[28]

𝐽 (s)(r𝑠,ω) =𝑊 (s)(r𝑠,r𝑠,ω,ω). (39)

The spectral polarization matrix can be split into two
parts, i.e.,

𝐽 (s)(r𝑠,ω) = 𝐽
(s)
u (r𝑠,ω)+𝐽

(s)
p (r𝑠,ω),

where the former represents a fully unpolarized field and the
latter refers to a completely polarized field. The spectral de-
gree of polarization P(r𝑠,ω), which is defined as the ratio of
the intensity of the polarized component to the total intensity,
at a point r𝑠 and frequency ω , is then obtained from the fol-
lowing expressions[28]

P2(r𝑠,ω) = 1− det𝐽 (s)(r𝑠,ω)

tr2𝐽 (s)(r𝑠,ω)

= 2
tr𝐽 (s)2(r𝑠,ω)

tr2𝐽 (s)(r𝑠,ω)
−1. (40)

Like the conventional form, as shown in Eq. (37), the first

equality shows a new expression for the spectral degree of po-

larization, while the second equality follows from the proper-

ties of the polarization matrix 𝐽 (s)(r𝑠,ω).

Recalling the definition of the spectral degree of coher-

ence µ(r𝑠1,r𝑠2,ω1,ω2), as shown in Eq. (36), it is of interest

to find that

P2(r𝑠,ω) = 2µ
2(r𝑠,r𝑠,ω,ω)−1. (41)

This equation establishes a connection between P(r𝑠,ω)

and the equal-point value of the space–frequency domain spec-

tral degree of coherence, µ(r𝑠,r𝑠,ω,ω). In other words,

equation (41) implies that there is an intrinsic relationship be-

tween the spectral degree of coherence and the spectral degree

of polarization of the scattered light field.
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Fig. 6. Contour graphs of modulus of degree of spectral coherence of scattered partially polarized spatially and spectrally partially coherent EGSMP
beam as a function of ω1 and ω2 for different values of θ , σR, T0, and Tcxx.
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Fig. 7. Curves of modulus of degree of spectral coherence of scattered partially polarized spatially and spectrally partially coherent EGSMP beam
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Finally, we study the spectral coherence of a scattered
partially polarized spatially and spectrally partially coherent
EGSMP beam. Figure 6 illustrates the countour graphs of the
modulus of the degree of spectral coherence |µ(r𝑠,ω1,ω2)| as
a function of ω1 and ω2 for different values of the scattering
angle θ , the effective width of the medium σR, the pulse dura-
tion T0, and the temporal coherence length Tcxx. To learn the
behaviors of the spectral coherence, we also calculate the re-
lations between modulus of the degree of spectral coherence
|µ(r𝑠,ω1,ω2)| and (ω1−ω2)/(ω1+ω2) at different values of

the scattering angle θ , the effective width of the medium σR,
the pulse duration T0 and the temporal coherence length Tcxx

as shown in Fig. 7. It is found that the θ slightly affects the
structure of |µ(r𝑠,ω1, ω2)|, whereas σR influences barely the
distribution of |µ(r𝑠,ω1,ω2)| as shown in Figs. 6(a1)–6(b3),
and 7(a) and 7(b). At the same time, it can be clearly seen in
Figs. 6(c1)–6(d3) and 7(c) and 7(d) that both T0 and Tcxx sig-
nificantly affect the structure of |µ(r𝑠,ω1,ω2)|, and the for-
mer’s effect is greater. In addition, the relative spectral width
decreases with T0 rising and Tcxx dropping.
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Figures 8 and 9 show the three-dimensional (3D) moduli
of the degree of spectral coherence distribution and the corre-
sponding cross line (ϕ = 0) of a scattered partially polarized
spatially and spectrally partially coherent EGSMP beam for
different values of the pulse duration T0 and the temporal co-
herence length Tcxx. The behaviors of the degree of spectral
coherence of the incident field are also depicted in Figs. 8(d)
and 9(d). As shown in Fig. 8, the value of |µ(r𝑠,ω1,ω2)| in-
creases as T0 decreases. At the same time, it can be clearly
found from Fig. 9 that the value of |µ(r𝑠,ω1,ω2)| deceases
with Tcxx rising. Furthermore, the spatial distribution remains
invariant as both T0 and Tcxx vary. Comparing with the inci-
dent field, the value of the degree of spectral coherence of the
scattered field varies periodically with position, and the value
is always less than the initial value.

4. Conclusions
In this work, based on the weak scattering theory of the

first-order Born approximation, we explore the statistical prop-
erties of a scattered partially polarized spatially and spectrally
partially coherent EGSMP beam irradiating on a deterministic
medium. The effects of the scattering angle θ , source param-
eters (i.e., the pulse duration T0 and the temporal coherence
length Tcxx), and the scatterer parameter (i.e., the effective
width of the medium σR) on the spectral density, the spectral
shift, the spectral DOP and the degree of spectral coherence in
the far-zero scattered field are studied numerically and com-
paratively. It is clearly seen that the scatter parameter barely
affects the behaviors of both the spectral DOP and the degree
of spectral coherence of the scattered beam, while the spectral
intensity and the spectral shift rely not only on the source pa-
rameters, but also on the scatter parameter and the scattering
angle. Comparing with the incident field, the values of both
the spectral DOP and the degree of spectral coherence of the
scattered field vary periodically with position. In addition, it

is noteworthy that the effective width of the medium plays a
dominant role in the spectral intensity and the spectral shift
of the far-zero scattered field. Therefore, we can acquire the
effective information about the scattered medium by measur-
ing the spectral intensity and the spectral shift of a scattered
partially polarized spatially and spectrally partially coherent
EGSMP beam in the far-zero field.
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